Layered double hydroxides (LDHs) and their calcined products layered double oxides (LDOs) are widely used as adsorbents for pollutant removal. Their adsorption performance are significantly influenced by intercalated ions, while previous studies primarily focusing on the impact of individual ions. For the first time, this paper reports the mechanism of the synergistic enhancement of phosphate adsorption properties of LDO by bicomponent interlayer ions. The ZnAl-LDO by fluorine‑chlorine co-doping (F, Cl-ZnAl-LDO) exhibits excellent adsorption capacity of 158.9 mgP/g, surpassing that of single-component intercalation Cl-ZnAl-LDO and F-ZnAl-LDO, as well as most LDH-based adsorbents. Further research and density functional theory calculations indicate the differential adsorption enhancement mechanism of the interlayer ions. Chlorine functions as the exchanged anion, whereas fluorine facilitates the complete replacement of chloride ions and hydroxyl groups by phosphate. This finding highlights the potential of utilizing the synergistic effects between different interlayer ions to design and synthesize advanced phosphate adsorbent materials.