Abstract
Nanoadsorbents having large specific surface area, high pore volume with tunable pore size, affordability and easy magnetic separation gained much popularity in recent time. Iron-based nanoadsorbents showed higher adsorption capacity for different pollutant removal from water among other periodic elements. Spinel ferrite nanomaterials among iron-bearing adsorbent class performed better than single iron oxide and hydroxides due to their large surface area, mesoporous pore, high pore volume and stability. This work aimed at focusing on water treatment using magnesium ferrite (MgFe2O4) nanomaterials. Synthesis routes, properties and pollutant adsorption were critically investigated to explore the performance of magnesium ferrite in water treatment. Structural and surface properties were greatly affected by the factors involved in different synthesis routes and iron and magnesium ratio. Complete removal of pollutants through adsorption was achieved using magnesium ferrite. Pollutant adsorption capacity of MgFe2O4 and its modified forms was found several folds higher than Fe2O3 and Fe3O4 nanomaterials. In addition, MgFe2O4 showed strong stability in water than other pure iron oxide and hydroxide. Modification with graphene oxide, activated carbon, biochar and silica was demonstrated to be beneficial for enhanced adsorption capacity. Complex formation was suggested as a dominant mechanism for pollutant adsorption. These nanomaterials could be a viable and competitive adsorbent for diverse pollutant removal from water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.