Nano-fibrillated bacterial cellulose (NFBC) has very long fibers (>17 μm) with diameters of approximately 20 nm. Hence, they have a very high aspect ratio and surface area. The high specific surface area of NFBC can potentially be utilized as an adsorbent. However, NFBC has no functional groups that can bind metal ions, limiting its potential applications. In this study, the hydroxyl groups on the surface of NFBC were chemically modified with EDTA monoanhydride to convert NFBC into a metal adsorbent. The fiber morphology and crystal structures of the modified NFBC were almost identical to those of the unmodified NFBC, suggesting that the surface hydroxyl groups of NFBC were well-conjugated with the EDTA groups. Surface-modified NFBC preferentially adsorbed transition metals in aqueous solutions, such as Cu(II), Hg(II), Pb(II), and Cd(II), but hardly adsorbed Mg(II) and Cr(VI). The adsorption of heavy metal ions can be explained by the pseudo-second-order kinetics of the chemisorption process and the Langmuir isotherm model. Furthermore, the EDTA-modified NFBC is a renewable and recyclable adsorbent. The results of this study indicate that surface-modified NFBC can be utilized as a biosorbent for heavy metal removal in chemical, food, pharmaceutical, and other industrial fields.
Read full abstract