Adrenocortical tumors (ACTs) frequently cause steroid excess and present cell-cycle dysregulation. cAMP/PKA signaling is involved in steroid synthesis and play a role in cell-cycle regulation. We investigated, by cell synchronization in the different phases of the cell-cycle, the control of steroidogenesis and the contribution of PKA in adrenocortical cells (H295R and culture of primary pigmented nodular adrenocortical disease cells). Cells showed increased steroidogenesis and a maximal PKA activity at G2 phase, and a reduction at G1 phase. PRKACA overexpression, or cAMP stimulation, enhanced PKA activity and induced steroidogenesis in all synchronized groups but is not sufficient to drive cell-cycle progression. PRKAR1A inactivation enhanced PKA activity and induced STAR gene expression, only in cells in G1, and triggered cell-cycle progression in all groups.These findings provide evidence for a tight association between steroidogenesis and cell-cycle in ACTs. Moreover, PRKAR1A is essential for mediating the function of PKA activity on both steroidogenesis and cell-cycle progression in adrenocortical cells.