We have developed an improved procedure for isolating and transfecting a chromaffin cell-enriched population of primary cells from adult mouse adrenal glands. Significantly, the parameters of a novel electroporation transfection technique were optimized to achieve an average transfection efficiency of 45% on the small number of cells derived from the mouse glands. Such transfection efficiency was previously unachievable with the electroporation protocols conventionally used with bovine chromaffin cells, even with use of large cell numbers. Our small scale technique now makes feasible the use of genetically homogenous inbred mouse models for investigations on the exocytotic pathway without the time, expense, and cellular changes associated with viral approaches. High fidelity co-expression of multiple plasmids in individual cells is a further advantage of the procedure. To assess whether the biophysical characteristics of mouse adrenal chromaffin cells were altered by this process, we examined structural integrity using immunocytochemistry and functional response to stimuli using calcium imaging, amperometry, and whole-cell capacitance and current clamp recordings. We conclude these parameters are minimally affected. Finally, we demonstrate that high transfection efficiency makes possible the use of primary mouse adrenal chromaffin cells, rather than a cell line, in human growth hormone secretion assays for high throughput evaluation of secretion.
Read full abstract