Paragangliomas (PGLs) derive from either sympathetic chromaffin tissue in adrenal and extra-adrenal abdominal or thoracic locations, or from parasympathetic tissue of the head and neck. Mutations of nuclear genes encoding subunits B, C, and D of the mitochondrial enzyme succinate dehydrogenase (SDHB 1p35-p36.1, SDHC 1q21, SDHD 11q23) give rise to hereditary PGL syndromes PGL4, PGL3, and PGL1 respectively. The susceptibility gene for PGL2 on 11q13.1 remains unidentified. Mitochondrial dysfunction due to SDHx mutations have been linked to tumorigenesis by upregulation of hypoxic and angiogenesis pathways, apoptosis resistance and developmental culling of neuronal precursor cells. SDHB-, SDHC-, and SDHD-associated PGLs give rise to more or less distinct clinical phenotypes. SDHB mutations mainly predispose to extra-adrenal, and to a lesser extent, adrenal PGLs, with a high malignant potential, but also head and neck paragangliomas (HNPGL). SDHD mutations are typically associated with multifocal HNPGL and usually benign adrenal and extra-adrenal PGLs. SDHC mutations are a rare cause of mainly HNPGL. Most abdominal and thoracic SDHB-PGLs hypersecrete either norepinephrine or norepinephrine and dopamine. However, only some hypersecrete dopamine, are biochemically silent. The biochemical phenotype of SDHD-PGL has not been systematically studied. For the localization of PGL, several positron emission tomography (PET) tracers are available. Metastatic SDHB-PGL is the best localized by [(18)F]-fluorodeoxyglucose PET. The identification of SDHx mutations in patients with PGL is warranted for a tailor-made approach to the biochemical diagnosis, imaging, treatment, follow-up, and family screening.
Read full abstract