Radiotherapy, despite its precision and non-invasiveness, often fails due to the resistance of cancer stem cells (CSCs), which are characterized by high self-renewal capabilities and superior DNA repair mechanisms. These cells can evade RT and lead to tumor recurrence and metastasis. To address this challenge, a novel delivery system named PB has been introduced. This system combines liposomes with platelet membranes to encapsulate Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES), thus enhancing its delivery and release specifically at tumor sites. In addition, this system not only targets CSCs effectively but also increases the local concentration of BPTES upon X-ray irradiation, which reduces glutathione levels in tumor cells, thereby increasing oxidative stress and damaging mitochondria. PB-elicited mitochondrial damage as the STING signal initiator, which mediated significant upregulation in the expression of a cGAS-STING pathway-related protein thereby amplifying the STING signal. Systemic intravenous administration of PB remarkably promoted DC maturation and CD8+ T cell infiltration, thus eliciting strong antitumor effects. Overall, this PB system presents a potent method to overcome CSC-related resistance and offers a promising approach for future cancer treatment protocols.
Read full abstract