The characteristics of the acetylation of dapsone (avlosulfon) were found to parallel those of isoniazid and sulfamethazine in 19 subjects, thereby establishing the genetic polymorphism for the acetylation of dapsone. This polymorphism was revealed by the distribution of the ratios of the plasma concentration of acetylated to parent drug. The acetylation capacity for dapsone was shown to be a reproducible, individual characteristic. Acetylation of dapsone and deacetylation of monoacetyl dapsone occurred concurrently. Constant plasma ratios of acetylated to parent drug characteristic for the individual were attained immediately after administration of dapsone but only after several hours following administration of monoacetyl dapsone. The available data suggest that acetylation rather than deacetylation is the primary determinant of these ratios. Rates of disappearance of dapsone and monoacetyl dapsone from the plasma were the same regardless of which of the two was administered or of the acetylator phenotype of the subject. After dapsone, no differences between rapid and slow acetylators were found in the 24 hour urinary excretion of dapsone and its conjugates hydrolyzed by mild or strong acid treatment. Rapid acetylators excreted significantly more monoacetyl dapsone and its acidlabile conjugates than slow acetylators. Because these compounds accounted for only a very small fraction of the dose, it was not possible to phenotype individuals by these measurements. More dapsone and acid‐hydrolyzable conjugates of dapsone were found in 120 hour urine collections after monoacetyl dapsone than after dapsone in both phenotypes.