To cope with increasing dietary iron exposure, the intestinal epithelium of weaning rats must control intracellular labile iron pools. Intestinal expression of heavy (H) and light (L) ferritin subunits during early weaning and after cortisone administration and/or iron feeding was investigated. Changes in H and L ferritin gene expression were determined by nuclear runoff transcriptional assay, Northern blot analysis, and metabolic labeling of protein synthesis. H ferritin mRNA levels did not change between days 12 and 15, doubled on day 18, and tripled on day 24. L ferritin mRNA was reduced by 50% on days 18 and 24. The protein level of the H and L subunits paralleled the change in mRNAs. Cortisone treatment on day 12 induced a precocious increase of H and decrease of L mRNA expression on day 15. Nuclear runoff assays showed that cortisone did not change H and reduced L ferritin gene transcription. The increased level of H mRNA by cortisone was not translated, unless the rats were fed an iron-fortified diet, which reduced iron regulatory protein activity and stimulated a three- to sixfold increase of ferritin synthesis. Thus changes in intestinal H and L ferritin expression in weaning rats are modulated by glucocorticoids and iron; the former stabilizes H mRNA and suppresses L ferritin gene transcription, and the latter derepresses translation of ferritin mRNA.
Read full abstract