Rheumatoid arthritis is an autoimmune disease mainly affecting the joints categorized by inflammation, swelling of the synovium and decrease in the joint movement. Bakuchiol, a meroterpene class of natural product present in Psoralea corylifolia known to possess anti-inflammatory effects by a variety of mechanisms. However, its effects in rheumatoid arthritis still remain unclear. In the present investigation, we studied the anti-arthritic effects of bakuchiol via in silico and in vivo experiments. It also showed antioxidant effects measured using DPPH assay where it showed free radical scavenging activity with IC50 value 468.26 μg/ml. Molecular Docking studies carried out on COX-1 (PDB ID: 3 N8Z), COX-2 (PDB ID: 4PH9) and TNF-α (PDB ID: 7JRA), proteins involved in inflammation in arthritis. Bakuchiol showed the maximum binding affinity for TNF-α with binding affinity score is -7.29 kcal/moland less affinity was observed for COX-1 and 2. In vivo antiarthritic effects were studied in arthritic female wistar rats model prepared by intradermal injection of freund's complete adjuvant. Bakuchiol was administered orally at dose of 10,20 and 40 mg/kg for 21 days. Our treatment showed that bakuchiol at 20 and 40 mg/kg exhibited significant anti-inflammatory effects (p<0.001) showed by significant decrease in paw volume, paw diameter, spleen and thymus weight and increase in pain threshold and body weight in arthritic rat model. A significant decrease in hematological parameters such as total leukocyte count (TLC), platelet count, CRP and rheumatoid arthritis factor (RF) and increase in red blood cells count, ESR and hemoglobin further demonstrated that bakuchiol treatment suppresses the progression of adjuvant induced arthritis (AIA) in arthritic rat model. Histological analysis further revealed that bakuchiol ameliorates the pathological manifestations of AIA and reverse the abnormality induced by AIA in rats shown by protection against bone necrosis involved with low influx of inflammatory cells. Therefore, in silico and in vivo results revealed that bakuchiol has the potential to be developed as potent antiarthritic agent.
Read full abstract