Abstract

Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of several pain-related substrates in spinal cord dorsal horn and are critically involved in the modification of pain transmission. The current study demonstrated that protein tyrosine phosphatase 1B (PTP1B), a unique endoplasmic reticulum-resident member of PTP family, displayed an activity-dependent increase in its protein expression and synaptic localization in spinal dorsal horn of adult male rats. PTP1B interacted with the Src Homology 3 (SH3) domain of Synapse-Associated Protein 102 (SAP102), one of the postsynaptic scaffolding proteins that anchored PTP1B at postsynaptic sites. The SAP102-tethered PTP1B augmented the synaptic transmission mediated specifically by GluN2B subunit-containing N-methyl-D-aspartate subtype glutamate receptors. Interference with PTP1B activity or disruption of its interaction with SAP102 attenuated GluN2B-mediated nociceptive transmission and ameliorated pain sensitization induced by intraplantar injection of Complete Freund's Adjuvant. These data suggested that the activity-dependent synaptic redistribution of PTP1B served as an important mechanism regulating GluN2B receptor activity and that manipulation of PTP1B synaptic targeting might represent an effective approach for the treatment of chronic inflammatory pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.