It is widely accepted that due to memory failures retrospective survey questions tend to be prone to measurement error. However, the proportion of studies using such data that attempt to adjust for the measurement problem is shockingly low. Arguably, to a great extent this is due to both the complexity of the methods available and the need to access a subsample containing either a gold standard or replicated values. Here I suggest the implementation of a version of SIMEX capable of adjusting for the types of multiplicative measurement errors associated with memory failures in the retrospective report of durations of life-course events. SIMEX is a method relatively simple to implement and it does not require the use of replicated or validation data so long as the error process can be adequately specified. To assess the effectiveness of the method I use simulated data. I create twelve scenarios based on the combinations of three outcome models (linear, logit and Poisson) and four types of multiplicative errors (non-systematic, systematic negative, systematic positive and heteroscedastic) affecting one of the explanatory variables. I show that SIMEX can be satisfactorily implemented in each of these scenarios. Furthermore, the method can also achieve partial adjustments even in scenarios where the actual distribution and prevalence of the measurement error differs substantially from what is assumed in the adjustment, which makes it an interesting sensitivity tool in those cases where all that is known about the error process is reduced to an educated guess.
Read full abstract