Micro-Doppler (MD) caused by the motion of the ballistic missile can contribute to successful recognition of the ballistic missile. Considering the real observation scenario. This paper proposes a method to derive the MD image of the ballistic missile by applying the range-Doppler algorithm (RDA) based on the real ∞ight scenario and analyzes the factor for the real-time MD imaging. Simulation results using the ∞ight trajectory constructed using the real target parameter demonstrate that we need a new cost function for phase adjustment and a new method for range alignment. In addition, matched-flltering needs to be performed in the baseband, and a su-cient PRF is required to prevent discontinuity of the MD image. Dechirping of MD and flltering of the random movement are also needed for a clear MD image. Among the various weapons used in the modern battlefleld, the ballistic missile in∞icts the biggest threat due to its high maneuvering speed and low radar cross section (RCS), and thus defending against the ballistic missile is a major issue. Recently, a theory has been developed to explain micro-Doppler (MD) efiect caused by the micro motion of the target and applied for radar target recognition purpose (1,2). In the case of the ballistic missile, three motion components | spinning, conning and nutation | cause MD, and they can be utilized for target recognition in combination with the motion parameter (1,3,4). However, very little research has been reported on its application to the real ∞ight scenario and the factor that needs to be considered for the real-time MD imaging. In this paper, considering the real observation scenario by a radar, we propose a method to extract an MD signature of a ballistic missile engaged in the real ∞ight scenario by applying the range-Doppler algorithm (RDA), which is generally used to form the inverse synthetic aperture radar (ISAR) image (5{8), and analyze various factors for the real-time high quality MD image. For this purpose, we constructed the ∞ight trajectory by using the real motion parameters of a 500km range scud missile conducted a translation motion compensation (TMC). Then, the time-varying MD image was formed by applying the time-frequency transform (TFT). Various simulations were performed by using the obtained MD image to study the requirement for the real-time MD imaging. Simulation results obtained by using a target composed of the point scatter demonstrate that the MD signature can be successfully constructed by using the range-Doppler algorithm. However, a new method for TMC is required for real-time high-quality MD imaging. In addition, matched-flltering (MF) in the baseband is required to form a focused image, and a su-cient PRF is needed to remove discontinuity. The re∞ected signal needs to be dechirped to reduce the required PRF, and a fllter needs to be designed to remove the random movement.
Read full abstract