The article describes the specific features of the forced diesel engines operating on a helical characteristic. One of them is a decreasing coefficient of excessive air during combustion with a decreasing power. Reducing the air charge of the cylinder and its available work require a greater cyclic supply of fuel to provide a given power, which affects the engine efficiency. It is possible to increase the boost pressure and the mass of the air charge of the cylinder by acting on the adjustable nozzle apparatus of a turbo-charging unit. In this case, gas parameters significantly change over the diesel cycle, which leads to changes in the indicators of thermal and mechanical tension. There have been presented the results of theoretical studies of indicators and criteria of thermal and mechanical tension of a marine two-stroke internal combustion engine operating in a wide range of modes with a constant coefficient of excessive air during combustion. Direct control of air flow at shared load modes was performed by turning the blades of an adjustable nozzle apparatus of a turbo-charging unit. The study of a diesel engine was carried out theoretically for two options: the original version (without adjustable nozzle unit) and under direct control of the air flow using an adjustable nozzle unit; the results were processed depending on the relative power of the diesel fractional load modes. There have been illustrated the graphs of dependence of the blade rotation angle of the nozzle apparatus of a turbocharging unit, relative change of the gas temperature behind the cylinder, cycle average temperature of the working fluid, average heat flux, relative change in the heat stress criterion of the piston, heat stress criterion for the cylinder, change in the pressure cycle of the working fluid, degree of increase working fluid during combustion, maximum rate of pressure rise depending on the load of the diesel engine.