We propose and demonstrate dielectric Fresnel phase zone pad (FPZP) structures for focusing surface plasmon polaritons (SPPs) propagating at the SiO2/Ag interfaces. We exploited up-conversion fluorescence microscopy to characterize the SPP focusing. We first report on the SPP focusing with 2-level FPZP structures that introduced a π-phase shift in the SPP wavefront between adjacent zones. We optimized the SPP focusing by fine-tuning the longitudinal width of the FPZP structure. This led to the enhancement of the peak intensity of the SPP focal spot and the reduction of the focal spot size in both the longitudinal and transverse directions. Such focusing was also demonstrated with different focal lengths. To further improve the SPP focusing, we developed a 4-level FPZP structure, which introduced a π/2-phase shift in the SPP wavefront between adjacent zones. With the optimized 4-level FPZP structure, the SPP focal spot peak intensity is further improved, and the spot size is reduced. To assist the design of the FPZP structures, we carried out theoretical analysis and numerical calculations to determine the SPP wavelengths at various oxide/Ag interfaces. We also carried out finite difference time domain (FDTD) calculations to simulate the SPP focusing with the FPZP structures. The results of the FDTD simulation agree with the experimental results qualitatively.