Microtubules in plant cells, as in animal cells, are dynamic structures. However, our lack of knowledge about the constituents of microtubules in plant cells has prevented us from understanding the mechanisms that control microtubule dynamics. To characterize some of these constituents, a cytoplasmic extract was prepared from evacuolated protoplasts (miniprotoplasts) of tobacco BY-2 cells, and microtubules were assembled in the presence of taxol and disassembled by cold treatment in the presence of Ca2+ and a high concentration of NaCl. SDS-PAGE analysis of triple-cycled microtubule protein revealed the presence of 120 kDa, 110 kDa and a group of 60-65 kDa polypeptides in addition to tubulin. Since these polypeptides had copolymerized with tubulin, through the three cycles of assembly and disassembly, and they bundle microtubules, we tentatively identified the three polypeptides as microtubule-associated proteins (MAPs). To characterize these factors further, triple-cycled microtubule protein was fractionated by Mono-Q anion-exchange chromatography and the microtubule-bundling activity of each fraction was examined. Fractions having microtubule-bundling activity contained only the 65 kDa MAP, an indication that the 65 kDa MAP is responsible for the bundling of microtubules. Purified 65 kDa MAP formed cross-bridge structures between adjacent microtubules in vitro. Polyclonal antibodies were raised in mice against the 65 kDa MAP. Immunofluorescence microscopy revealed that the 65 kDa MAP colocalized with microtubules in BY-2 cells throughout the cell cycle. Western blotting analysis of extracts from several species of plants suggested that the 65 kDa MAP and/or related peptides are widely distributed in the plant kingdom.
Read full abstract