With the widespread application of digital orthodontics in the diagnosis and treatment of oral diseases, more and more researchers focus on the accurate segmentation of teeth from intraoral scan data. The accuracy of the segmentation results will directly affect the follow-up diagnosis of dentists. Although the current research on tooth segmentation has achieved promising results, the 3D intraoral scan datasets they use are almost all indirect scans of plaster models, and only contain limited samples of abnormal teeth, so it is difficult to apply them to clinical scenarios under orthodontic treatment. The current issue is the lack of a unified and standardized dataset for analyzing and validating the effectiveness of tooth segmentation. In this work, we focus on deformed teeth segmentation and provide a fine-grained tooth segmentation dataset (3D-IOSSeg). The dataset consists of 3D intraoral scan data from more than 200 patients, with each sample labeled with a fine-grained mesh unit. Meanwhile, 3D-IOSSeg meticulously classified every tooth in the upper and lower jaws. In addition, we propose a fast graph convolutional network for 3D tooth segmentation named Fast-TGCN. In the model, the relationship between adjacent mesh cells is directly established by the naive adjacency matrix to better extract the local geometric features of the tooth. Extensive experiments show that Fast-TGCN can quickly and accurately segment teeth from the mouth with complex structures and outperforms other methods in various evaluation metrics. Moreover, we present the results of multiple classical tooth segmentation methods on this dataset, providing a comprehensive analysis of the field. All code and data will be available at https://github.com/MIVRC/Fast-TGCN.