Abstract

Current research presents a visual-computational tool to design and investigate round electrostatic lenses in sense of analysis procedure. The finite elements methods is adopted to find the electrostatic potential in the lens region. Laplace’s equation is first replaced by a certain functional which physically represent the electric energy stored in the electric field. This functional is then minimized at each mesh point with respect to the nearest eight ones. This minimization process is proved to be entirely equivalent to solving Laplace’s equation. The requirement that the functional being minimized is then yields a set of nine point equations which inter relate the potentials at adjacent mesh points. Finally this set of equations is solved to find the electrostatic potential at each mesh point in the region of the lens under consideration. The procedure steps mention above are coded to program written in visual basic. Hence an interface tool for analyzing and designing electrostatic lenses has been built up. Designing results proved that the introduced tools has an excellent outputs in comparison with the others written in not visual programming languages. Furthermore it easier for researchers and designer to use such a tool over their counterpart ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.