This study was conducted to evaluate the anti-obesity effects of long-term taurine supplementation in a mild obese ICR mouse model and to study the mechanism by which taurine induces weight loss. Three groups of male ICR mice were fed a normal chow diet, a high-fat diet (HFD), or an HFD supplemented with 2% taurine in drinking water for 28weeks. Body weight was measured every week. Metabolic, behavioral, and physiological monitoring were carried out using PhenoMaster at 28weeks. Interscapular brown fat (BAT), inguinal white fat tissue (WAT), and quadriceps muscle were analyzed and compared to assess the change of gene expression related to adipogenesis. Taurine supplementation showed the trend of anti-obesity effect in ICR mice fed an HFD for 28weeks. HFD-fed mice did not show significant difference of oxygen consumption (VO2), energy expenditure (EE), respiratory exchange rate (RER), and locomotive activity compared with those of normal chow diet fed mice. The expression of adipogenesis-related genes such as PPAR-α, PPAR-γ, C/EBP-α, C/EBP-β, and AP2 increased in BAT and WAT, but not in muscle tissue. Taurine supplementation showed the downregulation of these genes in WAT but not in BAT or muscle. Consistently, the expression of taurine transporter (TauT) and adipocyte-specific genes such as adiponectin, leptin, and IL-6 was regulated in a similar pattern by taurine supplementation. Long-term taurine supplementation causes weight loss, most likely by inhibiting adipogenesis in WAT. TauT expression may be involved in the expression of various genes regulated by taurine supplementation.
Read full abstract