The continuous pursuit of vehicle weight reduction forces the industry to look for alternative materials to steel. Light alloys such as aluminium or titanium are materials that provide a decrease in weight using conventional technologies. Additional weight reduction results from using tailor-welded blanks (TWB). While the joining and forming steel or even aluminium TWBs is quite well known and described in the technical literature, joining and forming titanium TWBs still poses a significant problem. In the paper, experimental tests carried out with welded samples manufactured from commercially pure titanium Gr 2 and titanium alloy Gr 5 sheets are presented. The samples were joined by electron beam welding. Mechanical testing and optical microscopy were used to characterise the welds and the base metal of the samples. The samples were subjected to uniaxial tension up to final failure. The 3‑D Digital Image Correlation system ARAMIS was used for monitoring the whole deformation process. This makes it possible for real-time observation of sample deformation. The test results and the numerical analysis of the tensile tests are compared. The numerical simulations were carried out with the ADINA System based on the Finite Element Method (FEM). The mechanical analysis leads to calculation of the strain state after sample deformation in uniaxial tension (mechanical model).
Read full abstract