A technique to produce cast Al-11.8 pct Si alloy composites containing up to 40 vol pct (15 pct by weight) dispersions of 125 µm size coconut shell char particles is described. The technique consists of stirring shell char particles into the vortex created by mechanical stirring of melts and subsequent casting of composite melts in suitable molds. The composite melts were also pressure die cast at a pressure of 100 MPa into cylindrical castings. The incorporation of large volume fraction of shell char particles is aided by (a) preheating of the particles to about 500 ‡C to 600 ‡C for two hours before introduction into the melts, and (b) alloying of Al-11.8 pct Si melts with 3 to 6 pct Mg. Electron Probe Micro Analysis (EPMA) analysis indicated an Mg enriched region around dispersed char particles in the composite indicating that prealloying with Mg probably improves wetting between char particles and the melt. Dispersions of 15 pct wt of char particles lead to decreases in hardness (from 85 BHN to 55 BHN), compression strength (from 542.30 MPa to 218.68 MPa), U. T. S., (from 164.16 MPa to 63.75 MPa), and electrical conductivity (from 27.8 pct I ACS to 11 pct I ACS). However, since these decreases are accompanied by a decrease in density, specific strength values of Al-11.8 pct-shell char composites are adequate for a variety of applications. Adhesive wear rates and friction coefficient values at low sliding speeds (0.56 m per second, and at loads of 10 N and 60 N) decrease with increase in wt pct of char particles under dry conditions.