For disposable microfluidic devices, easy and inexpensive fabrication is essential. Consequently, replication of microfluidic devices, using injection molding or hot embossing, from a master-mold is widely used. However, the conventional master-mold fabrication technique is unsatisfactory in terms of time and costs. In this regard, direct Ni growth (electroplating) from a back plate is promising when the photoresist is well-defined. Here, we demonstrate the use of SU-8 as a photoresist to define the Ni-growth region. We accomplish this application by focusing on the adhesion, the sidewall profile, and the removal of SU-8: the adhesion is enhanced by controlling the exposure dose, the soft-baking time, and by choosing the adhesion-promoting layer; the sidewall profile is regulated by selecting the intensity of each exposed wavelength, showing an aspect ratio of up to 20.9; and, easy removal is achieved by choosing a proper photoresist-stripper. Using the master-mold fabricated by this method, we test the mechanical stability of the features according to the aspect ratio and length; in the hot embossing process, the features are stable in the aspect ratio of up to 5.8 at a length of 200 microm. In addition, the plastic devices fabricated from this method are applied to the passive stop valves, showing a capillary pressure (-0.2 to -7.2 kPa).
Read full abstract