Chronic occupational stress is associated with a pronounced decline in emotional and cognitive functioning. Studies on neural mechanisms indicate significant changes in brain activity and changed patterns of event-related potentials in burnout subjects. This study presents an analysis of brain functional connectivity in a resting state, thus providing a deeper understanding of the mechanisms accompanying burnout syndrome. The sample consists of 49 burnout employees and 49 controls, matched by age, gender and occupation (Mage = 36.15, SD = 8.10; 59 women, 39 men). Continuous dense-array EEG data were collected from a 256-channel EEG system. The difference in functional connectivity between burnout and control subjects was tested in the eyes-closed (EC) and eyes-open (EO) conditions using the resting-state paradigm. The results indicate significant differences in brain activity between the burnout and the control groups. The resting-state network of the burnout group is characterized by decreased functional connectivity in frontal and midline areas in the alpha3 sub-band (11–13 Hz) in an eyes-open condition. The most significant effect of decreased connectivity was observed in the right frontal brain area. For the first time, these analyses point to distinctive aspects of functional connectivity within the alpha3 sub-band in burnout syndrome. These findings provide insights into the neurobiological underpinnings of burnout syndrome and its associations with changed resting-state networks. The data on neural characteristics in burnout subjects may help to understand the mechanisms of decline in cognitive function and emotion regulation and to search for adequate methods of treatment.
Read full abstract