The impacts of single-nucleotide polymorphisms (SNPs) in ALAD and VDR genes on Pb health effects and/or kinetics are inconclusive at low exposure levels, while studies including APOE SNPs are rare. In this study, we examined the associations of ALAD, VDR and APOE SNPs with exposure biomarkers of Pb and other trace elements (TEs) in Italian pregnant women (N = 873, aged 18–44 years) and their newborns (N = 619) with low-level mixed-element exposure through diet, the environment or endogenously. DNA from maternal peripheral venous blood (mB), sampled during the second and third trimesters, was genotyped for ALAD (rs1800435, rs1805313, rs1139488, rs818708), VDR (rs2228570, rs1544410, rs7975232, rs731236) and APOE (rs429358, rs7421) using TaqMan SNP assays. Personal and lifestyle data and TE levels (mB, maternal plasma, hair and mixed umbilical cord blood [CB]) from the PHIME project were used. Multiple linear regression models, controlling for confounding variables, were performed to test the associations between SNPs and TEs. The geometric means of mB-Pb, mB-Hg, mB-As and mB-Cd (11.0 ng/g, 2.16 ng/g, 1.38 ng/g and 0.31 ng/g, respectively) indicated low exposure levels, whereas maternal plasma Zn and Se (0.72 μg/mL and 78.6 ng/g, respectively) indicated adequate micronutritional status. Variant alleles of ALAD rs1800435 and rs1805313 were negatively associated with mB-Pb levels, whereas a positive association was observed for rs1139488. None of the VDR SNPs or their haplotypes had any association with Pb levels. Regarding APOE, the ϵ4 allele was associated with lower mB-Hg and CB-Hg, while a positive association was found with the ϵ2 allele and CB-Pb when the model included only newborn girls. The observed associations indicate possible modification effects of ALAD and APOE SNPs on Pb or Hg kinetics in women and their newborns with low exposure to non-essential TEs, as well as an adequate nutritional status of Zn and Se.
Read full abstract