Objective: To investigate the effects of corilagin on inflammation and collagen deposition in ovalbumin (OVA)-induced asthma mouse model and uncover the mechanism. Methods: We constructed a mouse model of OVA-induced asthma. Enzyme-linked-immunosorbent serologic assays were conducted to detect the effects of corilagin on cytokines and Immunoglobulin E (IgE) production. Hematoxylin and eosin staining was used to show pathological features in lung tissues. Masson trichrome assay was used to examine collagen deposition. In addition, the lung function was detected by mouse lung function apparatus. Immunoblot was used to confirm the mechanism. Results: Corilagin alleviates OVA-induced cytokine and IgE production. In addition, corilagin alleviates OVA-induced pathological changes and collagen deposition in lung tissues. Corilagin also suppressed airway resistance and lung function in mice. Mechanically, corilagin activated the adenosine monophosphate-activated protein kinase (AMPK) pathway in lung tissues. Conclusion: Corilagin attenuates airway inflammation and collagen deposition in OVA-induced asthmatic mice via AMPK pathway.
Read full abstract