ABSTRACTIn Acinetobacter baumannii, resistance-nodulation-cell division (RND)-type efflux is a resistance mechanism of great importance since it contributes to reduced susceptibility to multiple antimicrobial compounds. Some mutations within the genes encoding the two-component regulatory system AdeRS appear to play a major role in increased expression of the RND efflux pump AdeABC and, consequently, in reduced antimicrobial susceptibility, as they are commonly observed in multidrug-resistant (MDR) A. baumannii. In the present study, the impact of frequently identified amino acid substitutions, namely, D21V and D26N in AdeR and T156M in AdeS, on adeB expression, efflux activity, and antimicrobial susceptibility was investigated. Reverse transcription-quantitative PCR (qRT-PCR) studies revealed significantly increased adeB expression caused by D26N (AdeR) and T156M (AdeS). In addition, accumulation assays have shown that these mutations induce increased efflux activity. Subsequently, antimicrobial susceptibility testing via agar dilution and broth microdilution confirmed the importance of these substitutions for the MDR phenotype, as the MICs for various antimicrobials of different classes were increased. In contrast, the amino acid substitution D21V in AdeR did not lead to increased adeB expression and did not reduce antimicrobial susceptibility. This study demonstrates the impact of the D26N (AdeR) and T156M (AdeS) amino acid substitutions, highlighting that these regulators represent promising targets for interfering with efflux activity to restore antimicrobial susceptibility.IMPORTANCE The active efflux of antimicrobials by bacteria can lead to antimicrobial resistance and persistence and can affect multiple different classes of antimicrobials. Efflux pumps are tightly regulated, and their overexpression can be mediated by changes in their regulators. Identifying these changes is one step in the direction of resistance prediction, but it also opens the possibility of targeting efflux pump regulation as a strategy to overcome antimicrobial resistance. Here, we have investigated commonly found changes in the regulators of the main efflux pumps in Acinetobacter baumannii.