Electrospray ionization, now a well established technique for studying noncovalent protein-ligand interactions, is prone to production of alkali metal adducts. Here it is shown that this adduction significantly destabilizes the interactions between two model proteins and their ligands and that destabilization correlates with cation size. For both the [FKBP·FK506] and [lysozyme·NAG(n)] systems, dissociation of the metalated complex occurs at markedly lower collision energies than their purely protonated equivalents. Dependency upon size of the metal(+) demonstrates the importance of electrostatic charge density during the dissociation process. Differences in the gas phase basicities (GBapp) of the multiply charged protein ions and proton and sodium affinities of the ligands explain the observed charge partitioning during dissociation of the complexes. Ion mobility-mass spectrometry measurements demonstrate that metal cation adduction does not induce a significant increase in unfolding of the polypeptides, indicating that this is not the principal mechanism responsible for destabilization. Destabilizing effects can be largely reduced by exposing the electrospray to solvent (e.g., acetonitrile) vapor, a method that acts to reduce the amount of adduct formation as well as decrease the charge states of the resulting ions. This approach leads to more accurate determination of apparent K(D)s in the presence of trace alkali metals.
Read full abstract