The preparation of high-sulfur content organosulfur polymers has generated considerable interest as an emerging area in polymer science that has been driven by advances in the inverse vulcanization polymerization of elemental sulfur with organic comonomers. While numerous new inverse vulcanized polysulfides have been made over the past decade, insights into the mechanism of inverse vulcanization and structural characterization of the high-sulfur-content copolymers remain limited in scope. Furthermore, the exploration of new molecular architectures for organic comonomer synthesis remains an important frontier to enhance the properties of these new polymeric materials. In the current report, the first detailed study on the synthesis and inverse vulcanization of polycyclic rigid comonomers derived from norbornadiene was conducted, affording a quantitative assessment of polymer microstructure for these organopolysulfides and insights into the inverse vulcanization polymerization mechanism for this class of monomers. In particular, a stereoselective synthesis of the endo-exo norbornadiene cyclopentadiene adduct (Stillene) was achieved, which enabled direct comparison with the known exo-exo norbornadiene dimer (NBD2) previously used for inverse vulcanization. Reductive degradation of these sulfur copolymers and detailed structural analysis of the recovered sulfurated organic fragments revealed that remarkable exo-stereospecificity was achieved in the inverse vulcanization of elemental sulfur with both these polycyclic dienyl comonomers, which correlated to the robust thermomechanical properties associated with organopolysulfides made from NBD2 previously. Melt processing and molding of these sulfur copolymers were conducted to fabricate free-standing plastic lenses for long-wave infrared thermal imaging.