Circuit implementations of neuronal networks so far have been focusing on synaptic weight changes as network growth principles. Besides these weight changes, however, it is also useful to incorporate additional network growth principles such as guided axon growth and pruning. These allow for dynamical signal delays and a higher degree of self-organization, and can thus lead to novel circuit design principles. In this work we develop an ideal, bio-inspired electrical circuit mimicking growth and pruning controlled by guidance cues. The circuit is based on memristively coupled neuronal oscillators. As coupling element, we use memsensors consisting of a general sensor, two gradient sensors, and two memristors. The oscillators and memsensors are arranged in a grid structure, where oscillators and memsensors realize nodes and edges, respectively. This allows for arbitrary 2D growth scenarios with axon growth controlled by guidance cues. Simulation results show that the circuit successfully mimics a biological example in which two neurons initially grow towards two target neurons, where undesired connections are pruned later on.