Additive manufacturing (AM) is a technology that builds parts layer by layer. Over the past decade, metal additive manufacturing (AM) technology has developed rapidly to form a complete industry chain. AM metal parts are employed in a multitude of industries, including biomedical, aerospace, automotive, marine, and offshore. The design of components can be improved to a greater extent than is possible with existing manufacturing processes, which can result in a significant enhancement of performance. Studies on the anisotropy of additively manufactured metallic materials have been reported, and they describe the advantages and disadvantages of preparing different metallic materials using additive manufacturing processes; however, there are few in-depth and comprehensive studies that summarize the microstructural and mechanical properties of different types of additively manufactured metallic materials in the same article. This paper begins by outlining the intricate relationship between the additive manufacturing process, microstructure, and metal properties. It then explains the fundamental principles of powder bed fusion (PBF) and directed energy deposition (DED). It goes on to describe the molten pool and heat-affected zone in the additive manufacturing process and analyzes their effects on the microstructure of the formed parts. Subsequently, the mechanical properties and typical microstructures of additively manufactured titanium alloys, stainless steel, magnesium-aluminum alloys, and high-temperature alloys, along with their anisotropy, are summarized and presented. The summary indicates that the factors leading to the anisotropy of the mechanical properties of metallic AM parts are either their unique microstructural features or manufacturing defects. This anisotropy can be improved by post-heat treatment. Finally, the most recent research on the subject of metal AM anisotropy is presented.
Read full abstract