The effect of Tungsten (W), Tantalum (Ta) and simultaneous addition of Germanium (Ge) and Silicon (Si) on the microstructure evolution, tensile and creep properties of the near-alpha alloy Ti-5.7Al-3.9Sn-3.7Zr-0.7Nb-0.5Mo-0.35Si-0.05C have been investigated at high temperatures up to 650°C. Microstructural characterizations following solution treatment at 1050°C for 2 hours with oil quenching and aging treatment at 700°C for 2 hours followed by air cooling, highlighted that the additions of refractory elements such as W and Ta led to a decrease of both the volume fraction of the primary alpha phase (ap) and its average size. Tensile tests performed up to 650°C revealed a significant improvement in tensile strength with additions of W and Ta, even though a decrease of ductility has been also detected. Creep tests carried out at 600°C under a constant stress of 200 MPa pointed out that, refractory elements, Ge and Si have a beneficial effect on both primary and steady-state creep strain rates.
Read full abstract