Bio-based active food packaging materials have a high market demand. We use coaxial electrospinning technology to prepare core-shell structured nanofibers with sustained antibacterial and antioxidant properties. The fiber core layer was composed of gelatin and tea polyphenols, whereas tea polyphenols provide antibacterial and antioxidant properties; the fiber sheath was composed of pullulan polysaccharides with antioxidant properties. By using a scanning electron microscope, it can be seen that the diameter distribution of the prepared nanofibers was uniform and the surface is smooth; using a transmission electron microscope, it can be clearly seen that the nanofibers have a core-shell structure; Fourier Transform Infrared and X-ray diffraction analysis indicate that the nanofibers have an amorphous structure; the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging shows that nanofibers have higher antioxidant properties with the addition of tea polyphenols; antibacterial test showed that nanofibers had obvious inhibitory effect on the growth of Staphylococcus aureus and Escherichia coli; and the nanofiber film dissolution test shows that nanofibers can be used as fast soluble active packaging. Finally, core-sheath-structured nanofibers can serve as active packaging for instant food, possessing both rapid water solubility and excellent antibacterial and antioxidant activity, making water-soluble nanofibers interesting applications in the field of food packaging.
Read full abstract