Abstract

To achieve real-time monitoring of food freshness, a pH-responsive film based on sodium alginate-konjac glucomannan loaded with Lycium ruthenicum anthocyanins (LRA) was prepared, with the addition of tea polyphenols (TP) to enhance the stability of LRA. The surface structure of the films was observed by AFM. The results of FTIR and molecular docking simulation showed that LRA and TP were bound to polysaccharide by hydrogen bonds. The mechanical properties, barrier properties, and antioxidant/antibacterial properties of the films were significantly improved and the films showed obvious color response to pH. Notably, the AFM images showed TP and LRA could lead to more severe damage to the bacterial structure. The results of molecular docking simulation suggested that TP and LRA could act on different components of the bacterial cell wall, indicating their synergistic mechanism in antimicrobial activity. Moreover, the stability of LRA was improved due to the interactions of TP and polysaccharides with LRA. The aggregates formed by TP and LRA were clearly observed by AFM. Finally, the film showed excellent preservation and freshness monitoring effect in milk. In conclusion, TP-LRA-SA-KGM intelligent film exhibited excellent performance and represented a promising novel food packaging material with potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.