A single crystal of glycine-doped bis-thiourea zinc acetate (G-BTZA) with a dimension of 15 × 6 × 4 mm3 has been grown using the slow solution evaporation technique. The structural parameters of the crystals were determined using the single crystal XRD technique. The increase in optical transparency of the doped BTZA crystal was ascertained in the range of 200 to 900 nm using UV–visible spectral analysis. The improved optical band gap of the G-BTZA crystal is found to be 4.19 eV, and vital optical constants have been calculated using the transmittance data. The influence of glycine on the mechanical parameters of the BTZA crystal has been investigated via microhardness studies. The thermal stability of pure and doped BTZA crystals has been determined by employing the thermogravimetric and differential thermal analysis technique. The improvement in the dielectric properties of the BTZA crystal after the addition of glycine has been evaluated in a temperature range of 30 to 120 °C at a frequency of 100 KHz. The SHG efficiency of the glycine-doped BTZA crystal is found to be much higher than KDP and BTZA crystal material in a Kurtz–Perry powder analysis.