Definition of the cellular events involved in the production of collagenase by macrophages following activation has revealed prostaglandin E 2 (PGE 2)- and cAMP-dependent steps. Since ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis, is regulated by cAMP and is associated with certain aspects of protein synthesis, the potential role of this enzyme and its polyamine product, putrescine, in collagenase synthesis was examined. Lipopolysaccharide (LPS) activation of macrophages resulted in a maximal ODC response after 6 to 9 h with a 10- to 12-fold elevation in enzyme activity. This elevation in ODC appeared to be regulated by PGE 2 since indomethacin inhibited LPS-induced macrophage ODC levels by 70%. Associated with the indomethacin-mediated inhibition of ODC was a loss of collagenase synthesis. Furthermore, partial restoration of collagenase production in indomethacin-inhibited cultures could be achieved by the addition of putrescine. In additional studies α-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, also inhibited collagenase production when added to LPS-treated macrophages. This inhibition by DFMO could be reversed by the exogenous addition of putrescine. These findings demonstrate that the ODC pathway is an important intracellular component in the sequence of events that lead to macrophage collagenase synthesis.
Read full abstract