The paper deals with the numerical solution of a basic 2D model of the propagation of an ionization wave. The system of equations describing this propagation consists of a coupled set of reaction–diffusion-convection equations and a Poissons equation. The transport equations are solved by a finite volume method on an unstructured triangular adaptive grid. The upwind scheme and the diamond scheme are used for the discretization of the convection and diffusion fluxes, respectively. The Poisson equation is also discretized by the diamond scheme. Numerical results are presented. We deal in more detail with numerical tests of the grid adaptation technique and its influence on the numerical results. An original behavior is observed. The grid refinement is not sufficient to obtain accurate results for this particular phenomenon. Using a second order scheme for convection is necessary.
Read full abstract