The paper is devoted to the problem of the decentralized control of unmanned aerial vehicle (UAV) formation in the case of parametric uncertainty. A new version of the feedback linearization approach is proposed and used for a point mass UAV model transformation. As result, a linear model is obtained containing an unknown value of the UAV mass. Employing the speed-gradient design method and the implicit reference model concept, a combined adaptive control law is proposed for a single UAV, including the UAV’s mass estimation and adaptive tuning of the controller parameters. The obtained new algorithms are then used to address the problem of consensus-based decentralized control of the UAV formation. Rigorous stability conditions for control and identification are derived, and simulation results are presented to demonstrate the quality of the closed-loop control system for various conditions.