Imaging-based spectral surface plasmon resonance (λSPR) biosensing is predominantly limited by data throughput because of the multiplied data capacity emerging from 2-dimensional sensor array sites and the many data points required to produce an accurate measurement of the absorption dip. Here we present an adaptive feedback approach to address the data throughput issue in λSPR biosensing. A feedback loop constantly tracks the dip location while target-molecule binding occurs at the sensor surface. An adaptive window is then imposed to reduce the number of data points that each pixel has to capture without compromising measurement accuracy. Rapid wavelength scanning is performed with a liquid crystal tunable filter (LCTF). With the use of a feedback loop, our demonstration system can produce a dip measurement within 700ms, thus confirming that the reported λSPR approach is most suitable for real-time micro-array label-free biosensing applications.
Read full abstract