Digital twin technology significantly enhances construction site management efficiency; however, dynamically reconstructing site activities presents a considerable challenge. This study introduces a methodology that leverages camera data for the 3D reconstruction of construction site activities. The methodology was initiated using 3D scanning to meticulously reconstruct the construction scene and dynamic elements, forming a model base. It further integrates deep learning algorithms to precisely identify static and dynamic elements in obstructed environments. An enhanced semi-global block-matching algorithm was then applied to derive depth information from the imagery, facilitating accurate element localization. Finally, a near-real-time projection method was introduced that utilizes the spatial relationships among elements to dynamically incorporate models into a 3D base, enabling a multi-perspective view of site activities. Validated by simulated construction site experiments, this methodology showcased an impressive reconstruction accuracy reaching up to 95%, this underscores its significant potential in enhancing the efficiency of creating a dynamic digital twin model.
Read full abstract