Abstract

Computed tomography (CT), known for its exceptionally high accuracy, is associated with a substantial dose of ionizing radiation. Low-dose protocols have been devised to address this issue; however, a reduction in the radiation dose can lead to a deficiency in the number of photons, resulting in quantum noise. Thus, the aim of this study was to optimize the smoothing parameter (σ-value) of the block matching and 3D filtering (BM3D) algorithm to effectively reduce noise in low-dose chest and abdominal CT images. Acquired images were subsequently analyze using quantitative evaluation metrics, including contrast to noise ratio (CNR), coefficient of variation (CV), and naturalness image quality evaluator (NIQE). Quantitative evaluation results demonstrated that the optimal σ-value for CNR, CV, and NIQE were 0.10, 0.11, and 0.09 in low-dose chest CT images respectively, whereas those in abdominal images were 0.12, 0.11, and 0.09, respectively. The average of the optimal σ-values, which produced the most improved results, was 0.10, considering both visual and quantitative evaluations. In conclusion, we demonstrated that the optimized BM3D algorithm with σ-value is effective for noise reduction in low-dose chest and abdominal CT images indicating its feasibility of in the clinical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.