In the real world, the decision variables of large-scale sparse multi-objective problems are high-dimensional, and most Pareto optimal solutions are sparse. The balance of the algorithms is difficult to control, so it is challenging to deal with such problems in general. Therefore, An Enhanced Competitive Swarm Optimizer with Strongly Robust Sparse Operator (SR-ECSO) algorithm is proposed. Firstly, the strongly robust sparse functions which accelerate particles in the population better sparsity in decision space, are used in high-dimensional decision variables. Secondly, the diversity of sparse solutions is maintained, and the convergence balance of the algorithm is enhanced by the introduction of an adaptive random perturbation operator. Finally, the state of the particles is updated using a swarm optimizer to improve population competitiveness. To verify the proposed algorithm, we tested eight large-scale sparse benchmark problems, and the decision variables were set in three groups with 100, 500, and 1000 as examples. Experimental results show that the algorithm is promising for solving large-scale sparse optimization problems.