In order to solve the problem of robustness of beamforming algorithm with microphone array channel mismatch, an adaptive dynamic-weighted constrained least square algorithm-based microphone array robustness frequency invariant beamforming algorithm is proposed. In the proposed algorithm, by analyzing the microphone array model, with or without channel mismatch, the disadvantages of the constrained least square frequency invariant beamforming algorithm with channel mismatch are studied. After the probability density functions of the microphones are defined as the robustness factors and added to the constraint least square frequency invariant beamforming algorithm, the robustness is improved to a certain extent, but it is still poor. In order to further improve the robustness of the algorithm, dynamic-weighted coefficients for controlling frequency invariance in the cost function are used to regulate the sidelobe spectrum energy. The fluctuation error is defined as the ratio of the maximum to minimum value of array response formed by the same angle of arrival at different frequencies, within the frequency range of frequency invariant, to compare the proposed algorithm with the constrained least square robustness frequency invariant and minmax robustness broadband beamforming algorithm. Experimental results of the algorithms show that the fluctuation errors of the proposed algorithm are the smallest and its robustness is the best; it can effectively overcome the poor robustness of the beamforming algorithm caused by microphone array channel mismatch, and can be applied to any arbitrary array structure.
Read full abstract