In this paper, a stable fuzzy neural tracking control of a class of unknown nonlinear systems based on the fuzzy hierarchy approach is proposed. The adaptive fuzzy neural controller is constructed from the fuzzy neural network with a set of fuzzy rules. The corresponding network parameters are adjusted online according to the control law and update law for the purpose of controlling the plant to track a given trajectory. A stability analysis of the unknown nonlinear system is discussed based on the Lyapunov principle. In order to improve the convergence of the nonlinear dynamical systems, a fuzzy hierarchy error approach (FHEA) algorithm is incorporated into the adaptive update and control scheme. The simulation results for an unstable nonlinear plant demonstrate the control effectiveness of the proposed adaptive fuzzy neural controller and are consistent with the theoretical analysis.
Read full abstract