Efficient control strategies for managing the mass flow rate (MFR) of heat transfer fluids (HTF) during cloud transients in Solar Tower receivers play a pivotal role in optimizing plant profitability and receiver durability. This study focuses on the performance and durability of Solar Tower receivers during cloud transients. It evaluates adaptive feedback and feedforward control methods, which adjust the flow rate of heat transfer fluids based on real-time measurements of direct normal irradiance (DNI), receiver outlet and receiver panel outlet temperatures. The effectiveness of an aggressive all-sky and conservative clear-sky control strategy is explored against a conventional PI controller, emphasizing energy efficiency and receiver longevity. Simulations using a thermal Modelica model resembling a 100 MWel Crescent Dunes-like solar tower plant reveal that both advanced controllers provide precise setpoint tracking, while the PI controller struggles. The conservative controller which has a cloud standby mode prevents overheating during cloud transients by using a clear sky mass flow rate, while the aggressive controller uses the receiver panel outlet temperatures to correct for upstream tube temperature variations allowing for fast tracking correction and disturbance rejection, albeit with slight overshoots. Furthermore, the controllers significantly decrease the creep-fatigue damage accumulated in the receiver panels during cloudy days, due to limiting the increase in wall temperature spikes when cloud events end. Overall, this study underscores the pivotal role of HTF mass flow rate control systems in influencing receiver system failure modes and longevity and offers a new tool in controller design and operation assessment.
Read full abstract