Continuous and remote health monitoring medical applications with heterogeneous requirements can be realized through wireless body area networks (WBANs). Energy harvesting is adopted to enable low-power health applications and long-term monitoring without battery replacement, which have drawn significant interest recently. Because energy harvesting WBANs are obviously different from battery-powered ones, network protocols should be designed accordingly to improve network performance. In this article, an efficient cross-layer media access control protocol is proposed for radio frequency powered energy harvesting WBANs. We redesigned the superframe structure, which can be rescheduled by the coordinator dynamically. A time switching (TS) strategy is used when sensors harvest energy from radio frequency signals broadcast by the coordinator, and a transmission power adjustment scheme is proposed for sensors based on the energy harvesting efficiency and the network environment. Energy efficiency can be effectively improved that more packets can be uploaded using limited energy. The length of the energy harvesting period is determined by the coordinator to balance the channel resources and energy requirements of sensors and further improve the network performance. Numerical simulation results show that our protocol can provide superior system performance for long-term periodic health monitoring applications.
Read full abstract