The nonenergy-producing or biomass-accumulating functions of metabolism are attracting increasing attention, as metabolic changes are gaining importance as discrete signaling pathways in modulating enzyme activity and gene expression. Substantial evidence suggests that myocardial metabolic remodeling occurring during diabetic cardiomyopathy, heart failure, and cardiac pathological stress (e.g., myocardial ischemia, pressure overload) contributes to the progression of pathology. Within the rewired metabolic network, metabolic intermediates and end-products can directly alter protein function and/or regulate epigenetic modifications by providing acyl groups for posttranslational modifications, thereby affecting the overall cardiac stress response and providing a direct link between cellular metabolism and cardiac pathology. This review provides a comprehensive overview of the functional diversity and mechanistic roles of several types of metabolite-mediated histone and nonhistone acylation, namely O-GlcNAcylation, lactylation, crotonylation, β-hydroxybutyrylation, and succinylation, as well as fatty acid-mediated modifications, in regulating physiological processes and contributing to the progression of heart disease. Furthermore, it explores the potential of these modifications as therapeutic targets for disease intervention.
Read full abstract