Insulin-like growth factor-1 (IGF-1) regulates protein synthesis and cell cycle kinetics. Given that aging is associated with anabolic resistance, we sought to determine if the attenuated exercise-induced satellite cell (SC) expression in older muscle is associated with a blunted IGF-1 response. SC expression (Pax7+ cells) and protein (Western blot) and mRNA (RT-PCR) expression of IGF-1 splice variants and ubiquitous (IGFBP4) and muscle-specific (IGFBP3 and -5) IGF-1 binding proteins were measured in skeletal muscle of young (Y: 22 ± 2, n = 7) and older (O: 70 ± 2, n = 7) adults up to 48h after an acute bout of resistance exercise. SC expression was greater in Y compared to O (age; P < 0.01) and increased (interaction; P < 0.05) by 24h after exercise in Y only. IGF-1Ea and IGF-1Eb mRNA tended to be greater in O (age; P < 0.06-0.09). IGF-1Eb mRNA increased at 48h (time; P < 0.05), whereas IGF-1Ec mRNA increased (interaction; P < 0.05) at 24 and 48h in O only. IGF binding protein (IGFBP)4 mRNA was greater (age; P < 0.01) in O with the increase at 24h and 48h (time; P < 0.01) primarily driven by changes in O (interaction; P < 0.01). Despite IGFBP3 mRNA being greater in O (age; P < 0.01) and increasing at 48h (time; P < 0.01), there was no effect of age or exercise on IGFBP3 protein expression. In contrast, IGFBP5 mRNA was greater (age; P < 0.01) despite IGFBP5 protein expression being lower (age; P < 0.01) in O compared to Y. The greater muscle-specific expression of IGF-1 family members with a blunted post-exercise SC expression may be a compensatory attempt to rescue age-related anabolic resistance.
Read full abstract