T-cell Acute Lymphoblastic Leukemia (T-ALL) is a hematological malignancy in need of novel therapeutic approaches. Here, we identify the ATP-citrate lyase ACLY as overexpressed and as a novel therapeutic target in T-ALL. To test the effects of ACLY in leukemia progression, we developed an isogenic model of NOTCH1-induced Acly conditional knockout leukemia. Importantly, we observed intrinsic antileukemic effects upon loss of ACLY, which further synergized with NOTCH1 inhibition in vivo. Metabolomic profiling upon ACLY loss revealed a metabolic crisis with reduced acetyl-CoA levels, as well as a decreased oxygen consumption rate. Gene expression profiling analyses showed that the transcriptional signature of ACLY loss very significantly correlates with the signature of MYC loss in vivo . Mechanistically, the decrease in acetyl-CoA led to reduced H3K27ac levels in Myc , resulting in transcriptional downregulation of Myc and drastically reduced MYC protein levels. Interestingly, our analyses also revealed a reciprocal relationship whereby ACLY itself is a direct transcriptional target of MYC, thus establishing a feedforward loop that is important for leukemia progression. Overall, our results identified a relevant ACLY-MYC axis and unveiled ACLY as a novel promising target for T-ALL treatment.