To explore the effects and mechanisms of the Xianhecao-Huanglian drug pair on autophagy-mediated intervention in acute inflammatory bowel disease (IBD) via the JAK2/STAT3 pathway. The study examined the underlying mechanisms of action of Xianhecao (APL) and Huanglian (CR) using a mouse model of dextran sodium sulfate (DSS)-induced acute inflammatory bowel disease (IBD) and in an in vitro model of IBD induced by lipopolysaccharide (LPS). The assessment of the therapeutic efficacy of the Xianhecao-Huanglian drug combination in a mouse model of IBD caused by DSS included the following parameters: Assessment of weight loss or gain. Measurement of the disease activity index (DAI). Assessment of histological damage. Determination of organ index. Measurement of colon length. Ascertain the levels of inflammatory cytokines in the intestinal tissues and serum of mice. Immunohistochemistry (IHC) for the measurement of tight junction protein concentrations in the colon mucosa, including ZO-1, claudin-1, and occludin. Measurement of mucin levels, specifically Mucin 2 (Muc2). Hematoxylin and eosin (HE) staining for the observation of histopathological alterations in colonic tissues. Examining the effect on goblet cells using periodic acid-Schiff (PAS) labeling. Application of Western blot and immunofluorescence techniques for the detection of autophagy-related markers in colonic tissues and proteins associated with the JAK2/STAT3 pathway. A cell inflammation model of IBD was induced through LPS stimulation, and a serum containing the Xianhecao-Huanglian drug pair (referred to as ACHP-DS) was formulated. Cell viability, anti-proinflammatory cytokines, tight junction proteins, mucins, autophagy-related markers, and the JAK2/STAT3 signaling pathway were assessed. The Xianhecao-Huanglian drug pair significantly ameliorated the symptoms and survival quality of acute IBD mice, reducing the disease activity index score, raising MUC2 secretion and tight junction protein expression to improve the integrity of the intestinal barrier, and preserving goblet cell function; thus, protecting the intestines. It effectively restrained triggering the signaling pathway that involves JAK2 and STAT3, leading to the suppression of inflammation and amelioration of colonic inflammation damage. Additionally, it induced autophagy in mouse colonic tissues.The in vitro experiments demonstrated that the Xianhecao-Huanglian drug combination enhanced the viability of LOVO and NCM460 cells when exposed to LPS stimulation. Furthermore, it suppressed the production of inflammatory cytokines such as IL-6, IL-1β, as well as TNF-α, whilst increasing the production of IL-10, ZO-1, along with MUC2. These effects collectively led to the alleviation of inflammation and the restoration of mucosal integrity. The results were consistent with what was shown in the in vivo trial. Moreover, the medication demonstrated effectiveness in reducing JAK2 along with STAT3 phosphorylation levels in the LPS-induced inflammatory model of IBD cells. The intervention with either the Xianhecao-Huanglian drug combination-containing serum or the JAK2/STAT3 pathway inhibitor AG490 reversed the pro-inflammatory effects and increased autophagy levels in the LPS-stimulated cells. The Xianhecao-Huanglian drug combination modulates the JAK2/STAT3 pathway, leading to the induction of autophagy, which serves as an intervention for IBD.