A common necessity for prior unsupervised domain adaptation methods that can improve the domain adaptation in unlabeled target domain dataset is access to source domain dataset and target domain dataset simultaneously. However, data privacy makes it not always possible to access source domain dataset and target domain dataset in actual industrial equipment simultaneously, especially for aviation component like Electro-Mechanical Actuator (EMA) whose dataset are often not shareable due to the data copyright and confidentiality. To address this problem, this paper proposes a source free unsupervised domain adaptation framework for EMA fault diagnosis. The proposed framework is a combination of feature network and classifier. Firstly, source domain datasets are only applied to train a source model. Secondly, the well-trained source model is transferred to target domain and classifier is frozen based on source domain hypothesis. Thirdly, nearest centroid filtering is introduced to filter the reliable pseudo labels for unlabeled target domain dataset, and finally, supervised learning and pseudo label clustering are applied to fine-tune the transferred model. In comparison with several traditional unsupervised domain adaptation methods, case studies based on low- and high-frequency monitoring signals on EMA indicate the effectiveness of the proposed method.
Read full abstract